Weg ohne Fallunterscheidung:
\(|2 x^{2} - 4 x-3| = 3|^2\)
\((2 x^{2} - 4 x-3)^2 =3^2\)
\((2 x^{2} - 4 x-3)^2 - 3^2=0\)
3.Binom:
\([(2 x^{2} - 4 x-3) + 3]*[(2 x^{2} - 4 x-3)-3]=0\)
\([2 x^{2} - 4 x]*[2 x^{2} - 4 x-6]=0\)
1.) \([2 x^{2} - 4 x]=0\)\) → \([ x^{2} - 2 x]=0\) \( x₁=0\) \( x₂=2\)
2.) \([2 x^{2} - 4 x-6]=0\)
→ \( x^{2} - 2 x=3\) → \( (x - 1)^2=3+1=4\)
\( x - 1=2\) \( x₃=3\)
\( x - 1=-2\) \( x₄=-1\)
Probe für \( x₁=0\) \(|-3|=3\)✓
Probe für \( x₂=2\) \( |2 *2^{2} - 4*2-3| = 3\) ✓
Probe für \( x₃=3\) \(|2 *3^{2} - 4 *3-3| = 3\)✓
Probe für \( x₄=-1\) \(|2 *(-1)^{2} - 4 *(-1)-3| = 3\)✓