\(d(x)=x*(x^2-2kx+k^2)\)
\(x₁=0\)
\(x^2-2kx+k^2=0\)
\(x^2-2kx=-k^2\)
\((x-k)^2=-k^2+k^2=0|\sqrt{~~}\)
\(x-k=0\)
\(x₂=k\)
\(\frac{4}{3}= \int\limits_{0}^{k} (x^3-2kx^2+k^2*x)*dx=[\frac{x^4}{4}-\frac{2}{3}*k*x^3+\frac{k^2}{2}*x^2]\)
\(\frac{4}{3}=[\frac{k^4}{4}-\frac{2}{3}*k*k^3+\frac{k^2}{2}*k^2]=[\frac{1}{12}*k^4]\)
\(k=+-2\) und 2 Lösungen in ℂ (die aber nicht in Betracht kommen)