Text erkannt:
13. Spurpunkte und Ebenengleichung
Die Ebene \( E \) hat die Spurpunkte \( S_{x}, S_{y} \) und \( S_{z} \) bzw, die Spurgeraden \( g_{x y} \) und \( g_{y z^{r}} \) Zeichnen Sie ein Schrägbild der Ebene E und geben Sie eine Gleichung der Ebene an.
a) \( S_{x}(6|0| 0), S_{y}(0|4| 0), S_{z}(0|0| 8) \)
b) kein Spurpunkt auf der \( \mathrm{x} \)-Achse,
c) \( g_{x y}: \vec{x}=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)+r \cdot\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right), g_{y z}: \vec{x}=\left(\begin{array}{l}0 \\ 6 \\ 0\end{array}\right)+r \cdot\left(\begin{array}{l}0 \\ 3 \\ 4\end{array}\right) \) \( \mathrm{S}_{y}(0|4| 0), \mathrm{S}_{z}(0|0| 6) \)
Aufgabe:
(ist auf dem bild zu sehen)
Problem/Ansatz:
Also meine Fragen lauten;
Muss ich bei a) die Spurpunkte in die Parameterform umwandeln??
Was genau muss ich 13b machen und bei 13c?
Kann mir jemand bitte das erklären?
Danke im Voraus schonmal