(a) findest du hier:
https://www.mathelounge.de/982952/beweisen-oder-widerlegen-zuordnung-lineare-abbildung
(b) Hier habe ich heraus, dass die darstellende Matrix von \(f^*\) bzgl.
der Dualbasis \(e_1^*,e_2^*\) eine Drehmatrix zum Winkel \(-\theta\) ist.
Zu (b):
Die Elemente des Dualraumes kann man bzgl. der Dualbasis
als Zeilenvektoren auffassen: \(e_1^*=(1,0),\; e_2^*=(0,1)\)
Es ist dann mit \(A:=A_f\):
\(f^*(e_1^*)=e_1^*\cdot A=(1,0)\cdot A=(\cos \theta, -\sin \theta)=(\cos \theta)e_1^*+(-\sin \theta)e_2^*\), ebenso
\(f^*(e_2^*)=e_2^*\cdot A=(0,1)\cdot A=(\sin \theta, \cos \theta)=(\sin \theta)e_1^*+(\cos \theta)e_2^*\),
also ist die darstellende Matrix von \(f^*\) die Matrix$$\left(\begin{array}{cc}\cos \theta&\sin\theta\\-\sin \theta&\cos\theta\end{array}\right)=\left(\begin{array}{cc}\cos(-\theta)&-\sin(-\theta)\\\sin(- \theta)&\cos(-\theta)\end{array}\right)$$