Du hast eine sogenannte Treppenfunktion im Lebesgueschen Sinne vorliegen, obwohl sie nicht so aussieht. Ich benutze hier für Lebesgue-messbare Mengen A für die Indikatorfunktion die folgende Schreibweise:
\(I_{A}(x) = \left\{ \begin{array}{cc} 1 & x \in A \\ 0 & x \not\in A\\ \end{array}\right. \)
Damit gilt
$$f(x) = 0\cdot I_{(-\infty,0)}(x) + \infty\cdot I_{\{0\}}(x) + 2\cdot I_{(0,3)\setminus \mathbb{Q}}(x)+ 3\cdot I_{(0,3)\cap \mathbb{Q}}(x) + 0\cdot I_{[3,\infty)}(x) $$
Das Lebesgue-Integral von f ist nun definiert als
$$\int_{\mathbb R}f\;d\lambda = 0\cdot\lambda\left((-\infty,0)\right) + \infty\cdot \lambda\left(\{0\}\right) + 2\cdot \lambda\left((0,3)\setminus \mathbb{Q}\right)+ 3\cdot \lambda\left((0,3)\cap \mathbb{Q}\right)+ 0\cdot\lambda\left((0,\infty)\right)$$
Jetzt ist es wichtig, folgendes zu wissen, um diesen Ausdruck auszuwerten. Sei A Lebesgue-messbar, dann gilt im Rahmen der Maßtheorie:
(1) \(\lambda(A) = 0 \Rightarrow \pm\infty\cdot \lambda(A) =0\)
(2) \(f(x) = 0 \text{ für } x\in A,\; \lambda(A) =\infty \Rightarrow f(x)\cdot \lambda(A) = 0\)
Weiterhin gilt, dass
\(\lambda(\mathbb Q) = 0 \Rightarrow \lambda\left((0,3)\cap \mathbb{Q}\right) = 0 \text{ und } \lambda\left((0,3)\setminus \mathbb{Q}\right) = \lambda\left((0,3)\right) = 3 \)
Daher
$$\int_{\mathbb R}f\;d\lambda = 0 + 0 + 2 \cdot 3 + 3\cdot 0 + 0 = 6$$