Hallo!
Es handelt sich hier um Kurvenintegrale. Ich habe als Übung einige Aufgaben dazu gelöst. Könnte jemand einen Blick werfen und mir eine Rückmeldung geben, ob alle Rechenschritte richtig sind?
Aufgabe:
a) Seien
\( f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},\left(\begin{array}{c} x \\ y \\ z \end{array}\right) \mapsto\left(\begin{array}{c} 2 x y \\ -x^{2} \\ x z \end{array}\right) \quad \text { und } \quad \gamma:[0,1] \rightarrow \mathbb{R}^{3}, t \mapsto\left(\begin{array}{c} t \\ t^{2} \\ t(1-t) \end{array}\right) \)
Bestimme das Kurvenintegral von \( f \) längs \( \gamma \).
c) Seien
\( f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \mapsto\left(\begin{array}{c} x y \\ -z \\ y z \end{array}\right) \quad \text { und } \quad \gamma:[0,1] \rightarrow \mathbb{R}^{3}, t \mapsto\left(\begin{array}{c} t^{2} \\ -t \\ 1 \end{array}\right) \)
Bestimme das Kurvenintegral von \( f \) längs \( \gamma \).
d) Seien
\( f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left(\begin{array}{l} x \\ y \end{array}\right) \mapsto\left(\begin{array}{l} y \\ 1 \end{array}\right) \quad \text { und } \quad \gamma:[0,2] \rightarrow \mathbb{R}^{2}, t \mapsto\left(\begin{array}{c} t^{3}-t \\ t^{2} \end{array}\right) \)
Bestimme das Kurvenintegral von \( f \) längs \( \gamma \).
Problem/Ansatz:
a) \( \dot{\gamma}=\left(\begin{array}{c}1 \\ 2 t \\ 1-2 t\end{array}\right) \quad F(\gamma(t))=\left(\begin{array}{l}2 \cdot t \cdot t^{2} \\ -t \\ t \cdot(t(1-t))\end{array}\right) \)
\( \int \limits_{\gamma}\left\langle F_{1} d x\right\rangle=\int \limits_{0}^{1}\left\langle\left(\frac{2 t^{3}}{t \cdot t} \cdot(t(1-t))\right)\left(\begin{array}{c}1 \\ 2 t \\ 1-2 t\end{array}\right)\right\rangle d t= \)
\( \int \limits_{0}^{1} 2 t^{3}-2 t^{2}+t^{2}-t^{3}-2 t^{3}-2 t^{4} d t= \)
\( \int \limits_{0}^{1}-t^{3}-t^{2}-2 t^{4} d t=-\frac{t^{4}}{4}-\frac{t^{3}}{3}-\left.\frac{2 t^{5}}{5}\right|_{0} ^{1} \)
\( =\left(-\frac{1}{4}-\frac{1}{3}-\frac{2}{5}\right)-0=-\frac{15}{60}-\frac{20}{60}-\frac{24}{60} \)
\( =\frac{-59}{60}=-\frac{59}{60} \)
C)
\( \dot{\gamma}=\left(\begin{array}{c}2 t \\ -1 \\ 0\end{array}\right) \quad F(\gamma(t))=\left(\begin{array}{c}-t^{2} t \\ -1 \\ -t \cdot 1\end{array}\right)=\left(\begin{array}{l}-t^{3} \\ -1 \\ -t\end{array}\right) \)
\( \int \limits_{\gamma}\left\langle F_{1} d x\right\rangle-\int \limits_{0}^{1}\left\langle\left(\begin{array}{c}-t^{3} \\ -1 \\ -t\end{array}\right),\left(\begin{array}{c}2 t \\ -1 \\ 0\end{array}\right)\right\rangle d t= \)
\( \int \limits_{0}^{1}-2 t^{4}+1 d t=-2 \frac{t^{5}}{5}+\left.t\right|_{0} ^{1}= \)
\( =-2 \frac{1}{5}+1=-\frac{2}{5}+\frac{5}{5}=\frac{3}{5} \)
D)
\( \dot{\gamma}=\left(\begin{array}{c}3 t^{2}-1 \\ 2 t\end{array}\right) \quad F(\gamma(t))=\left(\begin{array}{c}t^{2} \\ 1\end{array}\right) \)
\( \int \limits_{\gamma}\left\langle F_{1} d x\right\rangle=\int \limits_{0}^{2}\left\langle\left(\begin{array}{c}t^{2} \\ 1\end{array}\right),\left(\begin{array}{c}3 t^{2}-1 \\ 2 t\end{array}\right)\right\rangle d t \)
\( =\int \limits_{0}^{2} 3 t^{4}-t^{2}+2 t d t=\frac{3 t^{5}}{5}-\frac{t^{3}}{3}+\left.\frac{2 t^{2}}{2}\right|_{0} ^{2} \)
\( =\frac{3 \cdot 2^{5}}{5}-\frac{2^{3}}{3}+\frac{2 \cdot 2^{2}}{2}=\frac{96}{5}-\frac{8}{3}+\frac{8}{2} \)
\( =\frac{576}{30}-\frac{80}{30}+\frac{12.0}{30}=\frac{616}{30}= \)