$$P(Z=k) = P(X+Y = k)$$
$$= \sum_{i=1}^n P(X+Y =k \cap Y=i)$$
$$= \sum_{i=1}^n P(X+Y =k | Y=i)\cdot \underbrace{P(Y=i)}_{=\frac 1n}$$
$$= \frac 1n\sum_{i=1}^n P(X+i =k)$$
$$= \frac 1n\sum_{i=1}^n \underbrace{P(X =k-i)}_{=0 \text{ für } i\geq k}$$
$$= \frac 1n\sum_{i=1}^{k-1} \underbrace{P(X =k-i)}_{= \frac 1n}$$
$$= \frac{k-1}{n^2}$$