Aufgabe:
folgenden Abbildungen f1, f2 : R2 → R2
mit
f1(x, y) = (y, x)
f2(x, y) = (x, y)
a)Zeigen Sie, dass f1 und f2 linear sind!
b) Stellen Sie die zugehörigen Matrizen für die beiden Abbildungen bzgl. der
kanonischen Basis auf!
c) Berechnen Sie f1 ◦ f1, f1 ◦ f2, f1 ◦ f1 und f2 ◦ f2.
d) Sind die Abbildungen f1 und f2 invertierbar? Stellen Sie ggf. die Umkehrmatrix bzgl. der kanonischen Basis
Problem/Ansatz:
hallo, ich hab ein Problem etwa die fragestellung zu verstehen was ist hier mit abbildung gemeint, bzw. sollte den wert von f1und f2 ein Vektor sein also x,y und y,x.
wäre es normale werte wie 4 ,6 , -2 usw. wäre alles einfach, aber ichweis nicht wie ich hier vorgehen soll,kann jemand mir die aufgabestellung besser erklären
Vielen Dank!