Aloha :)
Kandidaten für Extremstellen findest du dort, wo der Gradient verschwindet:$$\binom{0}{0}\stackrel!=\operatorname{grad}\left(e^x\cos y\right)=\binom{e^x\cos y}{-e^x\sin y}$$Da die Exponentialfunktion stets positiv ist, können nur die beiden Winkelfunktionen zu Null werden:$$\sin y=0\quad\land\quad\cos y=0$$Die Nullstellen der Sinusfunktion sind alle ganzzahligen Vielfache von \(\pi\), also muss \(y=\mathbb Z\cdot\pi\) sein. Jedoch ist \(\cos(\mathbb Z\cdot\pi)\in\{-1;+1\}\), also entweder \(1\) oder \(-1\). Es gibt also kein Argument, bei dem beide Winkelfunktionen, Sinus und Cosinus, zugleich Null werden.
Daher hat die Funktion keine kritischen Punkte.