Aloha :)
Wir betrachten die Funktion:$$f(x)\coloneqq\tan(x)-x\quad;\quad x\in\left[0\bigg|\frac\pi2\right)$$
Über ihr Monotonieverhalten gibt das Vorzeichen der ersten Ableitung Auskunft:$$f'(x)=\left(\frac{\sin x}{\cos x}-x\right)'=\frac{\cos x\cdot\cos x-\sin x\cdot(-\sin x)}{\cos^2 x}-1=\frac{\cos^2x+\sin^2x}{\cos^2x}-1$$$$\phantom{f'(x)}=\frac{\cos^2x}{\cos^2x}+\frac{\sin^2x}{\cos^2x}-1=1+\tan^2(x)-1=\tan^2(x)>0\quad\text{für }x\in\left(0\bigg|\frac\pi2\right)$$Die Funktion \(f(x)\) ist also streng monoton wachsend für \(x\in(0\big|\frac\pi2)\).
Da \(f(x)\) in \(x=0\) stetig ist, gilt insbesondere \(f(x)\ge f(0)=0\). Daher gilt:$$\tan(x)-x\ge 0\quad\text{für }x\in\left[0\bigg|\frac\pi2\right)$$
Über das Krümmungsverhalten einer Funktion gibt das Vorzeichen der zweiten Ableitung Auskunft. Der Rechnung aus dem ersten Teil entnehmen wir die erste Ableitung der Tangens-Funktion:$$\tan'(x)=1+\tan^2(x)=\frac{\cos^2x}{\cos^2x}+\frac{\sin^2x}{\cos^2x}=\frac{1}{\cos^2x}$$Mit der Kettenregel folgt daraus zweite Ableitung:$$\tan''(x)=\left(\cos^{-2}x\right)'=-2\cos^{-3}x\cdot(-\sin x)=\frac{2\sin x}{\cos^3x}=\frac{2\tan x}{\cos^2x}>0\quad\text{für }x\in\left(0\bigg|\frac\pi2\right)$$
Die \(\tan\)-Funktion ist also für \(x\in\left(0\big|\frac\pi2\right)\) linksgekrümmt, also konvex.