Alternative mit der Quotientenregel:
\(f(x) = e^{x} - e^{-x} \)
\(f(x) = e^{x} - \frac{1}{e^{x}}\)
\(f(x) = \frac{ e^{2x}-1 }{e^{x}}\)
\(\frac{df(x)}{dx} = \frac{ e^{2x}* 2*e^{x}- (e^{2x}-1)*e^{x}}{e^{2x}}=\frac{2* e^{2x}- (e^{2x}-1)}{e^{x}}\)
\(\frac{df(x)}{dx} =\frac{ e^{2x}+1}{e^{x}}\)
\(\frac{d^2f(x)}{dx^2} =\frac{ e^{2x}*2*e^{x}-(e^{2x}+1)*e^{x}}{e^{2x}}=\frac{2* e^{2x}-(e^{2x}+1)}{e^{x}}\)
\(\frac{d^2f(x)}{dx^2} =\frac{ e^{2x}-1}{e^{x}}=f(x)\)
\(\frac{ e^{2x}-1}{e^{x}}=0\)
\(e^{2x}=1\)
\(e^{2x}=e^{ln(1)}\)
Exponentenvergleich:
\(2x=ln(1)=0\)
\(x=0\) \(f(0) = 0 \)