Aufgabe:
Lösen Sie das folgende System von linearen Differenzengleichungen.
\( \begin{array}{l} x_{k+1}=-y_{k}-2 \cdot x_{k} \\ y_{k+1}=2 \cdot y_{k}-x_{k} \end{array} \)
(a:) \( \left(\begin{array}{l}x_{k} \\ y_{k}\end{array}\right)=C_{1}(\sqrt{5})^{k}\left(\begin{array}{c}1 \\ 2-\sqrt{5}\end{array}\right)+C_{2}(\sqrt{5})^{k}\left(\begin{array}{c}1 \\ -\sqrt{5}-2\end{array}\right) \)
(b:) \( \left(\begin{array}{l}x_{k} \\ y_{k}\end{array}\right)=C_{1}(-\sqrt{5})^{k}\left(\begin{array}{c}1 \\ \sqrt{5}-2\end{array}\right)+C_{2}(-\sqrt{5})^{k}\left(\begin{array}{c}1 \\ \sqrt{5}+2\end{array}\right) \)
(c:) \( \left(\begin{array}{l}x_{k} \\ y_{k}\end{array}\right)=C_{1}(-\sqrt{5})^{k}\left(\begin{array}{c}1 \\ \sqrt{5}-2\end{array}\right)+C_{2}(\sqrt{5})^{k}\left(\begin{array}{c}1 \\ -\sqrt{5}-2\end{array}\right) \)
(d:) \( \left(\begin{array}{l}x_{k} \\ y_{k}\end{array}\right)=C_{1}(-\sqrt{5})^{k}\left(\begin{array}{c}1 \\ 2-\sqrt{5}\end{array}\right)+C_{2}(\sqrt{5})^{k}\left(\begin{array}{c}1 \\ \sqrt{5}+2\end{array}\right) \)
Problem/Ansatz:
Was sollte hier das Ergebnis sein ? danke im voraus :)