0 Daumen
189 Aufrufe

Aufgabe:

A 3: Gegeben sind die Vektoren \( u_{1}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) \) und \( u_{2}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right) \).
(a) Geben Sie einen Vektor \( u_{3} \) an, so dass Sie eine Basis des \( \mathbb{R}^{3} \) erhalten.
(b) Ist der Vektor \( u_{4}=\left(\begin{array}{c}-2 \\ 5 \\ -1\end{array}\right) \) ein Element der linearen Hülle von \( u_{1} \) und \( u_{2} \) ?


Problem/Ansatz

Bei der Aufgabe a) Habe ich aus den beiden vorhandenen Vektoren das Skalarprodukt gebildet um zu schauen ob die beiden Vektoren Orthogonal zueinander sind. Sie ist nicht und deshalb denke ich das die Aufgabe a) nicht möglich ist.


Bei der Aufgabe b) hab ich leider gar keinen Ansatz


Ich hoffe Ihr könnt mir Helfen ;D

Avatar von

1 Antwort

0 Daumen

a) Geben Sie einen Vektor u3 an, sodass Sie eine Basis des R^3 erhalten.

[2, 1, -1] ⨯ [1, 2, -1] = [1, 1, 3]

b) Ist der Vektor u4 = [-2, 5, -1] ein Element der linearen Hülle von u1 und u2?

r·[2, 1, -1] + s·[1, 2, -1] = [-2, 5, -1] --> r = -3 ∧ s = 4

Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community