Text erkannt:
Aufgabe 1. (10P) Eine Helix war definiert als reguläre Kurve \( \underline{\alpha} \) im \( \mathbb{R}^{3} \), für die ein \( 0 \neq \underline{u} \in \mathbb{R}^{3} \) existiert mit \( \langle\underline{T}, \underline{u}\rangle= \) konst. Eine Kreis-Helix ist eine Helix, deren Projektion auf eine Ebene orthogonal zu \( \underline{u} \) ein Kreis ist.
Zeigen Sie: \( \underline{\alpha} \) ist eine Kreis-Helix genau dann, wenn \( \tau= \) konst. \( \neq 0 \) und \( k= \) konst. \( >0 \) gilt.
Hallo, ich möchte eine Kurve a(t)=(rcost,rsint,ht) mit r,h>0 (Helix) auf eine Ebene projizieren mithilfe eines 3-dim. Vektors v (z.B. v=(0,0,1)) als orthogonale Projektion. Das Ergebnis soll dann ein Kreis sein. Aber wie komme ich auf die Projektion? Und wie sieht dann die "projizierte Kurve" aus?
Ich denke wenn ich diesen Schritt verstanden habe, sollte der Beweis auch kein großes Problem mehr darstellen.
Hoffe mir kann hier wer Helfen :D