\( z_1=a+bi \quad z_2=c+di \quad a,b,c,d \in \mathbb{R} \quad i=\sqrt{-1}\)
\(\overline{z_1 \cdot z_2}=\overline{(a+bi)(c+di)}=\overline{ac+adi+bci-bd}=ac-bd-(ad+bc)i\)
$$\overline{z_1}\cdot \overline{z_2}=\overline{(a+bi)}\cdot \overline{(c+di)}=(a-bi)(c-di)=ac-bd-(ad+bc)i$$