0 Daumen
797 Aufrufe
< a,b+ c > = Sei a=(aplha1 + alpha2) Die anderen auch Kann mir bitte einer schritt für schritt erklären
Avatar von 2,1 k

1 Antwort

+1 Daumen
 
Beste Antwort

Hallo immai,

 

wenn Du von den beiden Vektoren

alpha 1                                         b

                             und

alpha2                                         c

(man denke sich eine große Klammer um alpha1 und alpha2 sowie eine weitere um b und c)

das Skalarprodukt bilden willst, multiplizierst Du die einzelnen Komponenten zeilenweise und addierst diese Produkte, also

alpha1 * b + alpha2 * c = "Skalarprodukt"

 

Hättest Du zum Beispiel zwei Vektoren mit je 3 Komponenten (ich schreibe sie jetzt mal nebeneinander) wie

(a1|a2|a3) * (b1|b2|b3)

dann ergäbe sich als Skalarprodukt

a1*b1 + a2*b2 + a3*b3 = "Skalarprodukt"

 

Das Skalarprodukt ist ein Skalar, also eine Zahl, aber kein Vektor wie die ursprünglichen Faktoren!

 

Besten Gruß

Avatar von 32 k

Ich glaube, ganz so einfach geht es hier vielleicht nicht.

https://www.mathelounge.de/107035/kann-mir-bitt-einer-skalarprodukt-erklaren-und-beweis

Wie auch schon in diesem Thread soll man ja die elementaren Eigenschaften eines Skalarprodukts zeigen, d.h. hier geht es möglicherweise nicht um das Standardskalarprodukt (das du hier benutzt hast). Aber solange wir keine vollständige Aufgabenstellung kriegen (insbesondere, wie das Skalarprodukt hier definiert ist), wird dazu keiner etwas sagen können.

Ja da hast du recht. Ich muss mich entschuldigen. Das ich die aufgaben stellung nicht richtig reingestellt habe. Aber inzwischen durch all eure hilfen habe ich verstanden was was ist. Ich habe dich leider irregeführt aber weil ich es leider selber nicht besser wusste. Ich sollte einfach wie im skript gezeigt wurde (im skript wurde das nornaleskalar produkt u d alles andereerklärt und definiert.) Ich muss einfach ausmultiplieziren und dann so umformen das man die rechte seite sehen konnte. Danke nochmal an alle.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community