0 Daumen
680 Aufrufe

Ich brauche alle Vektoren \( \begin{pmatrix} a\\b\\c\\d \end{pmatrix} \), für die gilt a+2b+3c+4d=0. Gibt es dafür irgendeine Methode, mit der das schnell geht, oder muss ich durchprobieren?

Avatar von

Kennst du das Skalarprodukt zweier Vektoren?

Ja, wie kann ich das hier verwenden? Was bringt mir das?

2 Antworten

0 Daumen

Wie lautet denn die Aufgabenstellung genau, also wörtlich?

Es gibt unendlich viele solcher Vektoren, mit Durchprobieren wirst Du nicht fertig werden.

Die Menge der gesuchten Vektoren ist die Lösungsmenge eines LGS mit einer Gleichung (die steht ja da) und vier Unbekannten. Die Menge ist also ein 3dimensionaler Unterraum des \(R^4\).

Avatar von 10 k

..............................................

Aha. Diese Aufgabenstellung solltest du mal etwas präzisieren!

Aha, es ist also eine Basis gesucht, es müssen nicht alle Vektoren angegeben werden. Glück gehabt! ;-)

Wie oben schon gesagt, hat die Basis drei Elemente. Finde also drei linear unabhängige Vektoren, die die Gleichung erfüllen. Das kann man durchaus mit Probieren hinkriegen. Fang mal an.

Ah ok, danke!

0 Daumen

Das könnte z.B. wie folgt gehen.

a + 2·b + 3·c + 4·d = 0 → a = - 2·b - 3·c - 4·d

X = r·[-2, 1, 0, 0] + s·[-3, 0, 1, 0] + t·[-4, 0, 0, 1]

Avatar von 489 k 🚀

Danke für die Antwort!

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community