0 Daumen
944 Aufrufe

∫ (2x)*ex^2-4 dx

Hi,

Ich möchte 2xex24dx \int 2x \cdot e^{x^2-4} \mathrm{dx} berechnen.


Substitution: u : =x24 u := x^2 -4 . Ist das zielführend? Anschliessend wäre partielle Integration möglich. Bitte keine(!!) Lösung, nur Tipps! Danke.


Gruss

Avatar von 4,8 k

Also ich möchte wissen ob ich mit der Substitution total falsch liege.

1 Antwort

0 Daumen
 
Beste Antwort

Die Substitution ist richtig. Das würde ich auch so machen.

Auf die Partielle Integration kannst du verzichten.

Avatar von 491 k 🚀

Ok.

dudx=2xdx=12xdu \frac{\mathrm{du}}{\mathrm{dx}} \quad = \quad 2x \quad \Rightarrow \mathrm{dx} = \frac{1}{2x} \mathrm{du}

Einsetzen:

...=2xeudu2xdu=eudu=eu+C ... = \int 2x \cdot e^u \cdot \frac{\mathrm{du}}{2x} \mathrm{du} = \int e^u \mathrm{du} = e^u + C

Rücksubstitution:

eu+Cex24+C e^u + C \longrightarrow e^{x^2 - 4} + C


Richtig? Danke.

Absolut richtig.
Du hast sogar das C hingeschrieben das ich immer weglasse :)

Ok, *freu*. Aber dank C gibt es nicht die Stammfunktion sondern eine Stammfunktion, also mehrere ;)

Auch ohne das C ist es eine Stammfunktion. Eine aus vielen.

Eventuell kann man die Stammfunktion sagen, wenn du die Stammfunktion suchst bei der der Funktionswert an der Stelle 0 einen bestimmten Wert hat.

Aber wie gesagt. Mit dem C ist das völlig korrekt. Ich mache eigentlich immer einen Fehler wenn ich es weglasse :)

Ein anderes Problem?

Stell deine Frage