For the following maximization problem, choose your variables, write the objective function and the constraints, graph the constraints, shade the feasibility region, label all critical points, and determine the solution that optimizes the objective function.
A factory manufactures chairs and tables, each requiring the use of three operations: Cutting, Assembly, and Finishing. The first operation can be used at most 40 hours; the second at most 42 hours; and the third at most 25 hours. A chair requires 1 hour of cutting, 2 hours of assembly, and 1 hour of finishing; a table needs 2 hours of cutting, 1 hour of assembly, and 1 hour of finishing. If the profit is $20 per unit for a chair and $30 for a table, how many units of each should be manufactured to maximize revenue?
Mein Problem ist, dass ich durch die 3 Variablen, z.B. 40 hours, 42 hours, 25 hours, keine lineare Gleichung im Geometrie-Programm "Geogebra" erstellen kann. Aber wie soll man im Allgemeinen die Aufgabe lösen, wenn man erst die Gleichungen aufstellt und sie dann Koordinatensystem darstellt? Z.B: C = 40x + 42y + 25z kann ich doch gar nicht geographisch darstellen?