Sei {\(W_i\)} mit \(i\in I\) eine Familie von Unterräumen eines Vektorraumes V, wobei I eine(beliebige auch unendliche) Indexmenge ist. Der kleinste Vektorraum, der jeden Unterraum \(W_i\) enthält, heisst die Summe der Unterräume \(W_i\) und wird mit \(\sum_{i\in I} W_i \) bezeichnet. Beweise, dass:
\(\sum_{i\in I} W_i \) ={ \(\sum_{i\in J} w_i \) |\(J \Subset I \) endlich , \(w_i \in W_i\) für alle i \(\in\)J}