Berechne die Inverse über die Adjunkte und der Inversen von der Determinante.
Matrix
[6, 24, 1; 13, 16, 10; 20, 17, 15]
Adjunkte
[70, -343, 224; 5, 70, -47; -99, 378, -216]
Determinante
DET([6, 24, 1; 13, 16, 10; 20, 17, 15]) = 441
Inverse von 441 Modulo 26
441·x = 1 + 26·y --> x = -1 + 26·b ; y = -17 + 441·b also z.B. x = 25
25·[70, -343, 224; 5, 70, -47; -99, 378, -216] MOD 26 = [8, 5, 10; 21, 8, 21; 21, 12, 8]
Probe
[6, 24, 1; 13, 16, 10; 20, 17, 15]·[8, 5, 10; 21, 8, 21; 21, 12, 8] = [573, 234, 572; 650, 313, 546; 832, 416, 677]
[573, 234, 572; 650, 313, 546; 832, 416, 677] MOD 26 = [1, 0, 0; 0, 1, 0; 0, 0, 1]