Seien B={u,v,w,x} eine menge Vektoren in R³. Seien {u,v ,w} eine Basis von R³ als die maximal mögliche linear unabhängige teilmenge von B (denn der nullvektor ist linear abhängig) mit {(1,0,0), (0,1,0),(0,0,1)}. Da alle Elemente aus R³ dadurch dargestellt werden können lässt sich auch x daraus darstellen und dann ist x linear abhängig von {u,v ,w}. B ist also linear abhängig und kann deswegen keine basis von R³ sein.