1.) 4k! kommt raus da du mit (4k+4)! gekürzt hast
<br>
2.) Wenn man den Ausdruck mit (k+1)!^4 ausschreibt, kann man diesen wieder mit k!^4 kürzen, es bleibt dann (k+1)^4
<br>
3.) z^{k+1} kürzen mit z^k --> z^1 was du richtig herausgenommen hast
<br>
(4k+4)! -> (4k+1)(4k+2)(4k+3)(4k+4)(4k)!
Wenn man das der Reihe nach anwendet kommt:
(k+1)^4/((4k+1)(4k+2)(4k+3)(4k+4)) raus