Die Punkt-Steigungs-Form einer Gleichung der Tangente im Punkt \(P\left(x_1|f(x_1\right))\) an den Graphen einer an der Stelle \(x_1\) differenzierbaren Funktion \(f\) lässt sich so schreiben:
$$ y = f'(x_1) \cdot (x-x_1) + f(x_1) $$Im vorliegenden Fall ergibt sich also
$$ y = 10 \cdot (x-5) + 18 $$Dies wird nach Ausmultiplizieren und Zusammenfassen zu
$$ y = 10 \cdot x - 32. $$Diesen Rechenweg finde ich, ehrlich gesagt, einfacher durchzuführen, leichter zu merken und konzeptionell dem Ableitungsbegriff und seiner Definition, also dem eigentlichen Kernpunkt der Differentialrechnung, näher, als dieses unsägliche Gewurschtel, was etwa in den aktuellen Lambacher/Schweizer-Schulbüchern zu diesem Thema vorgeschlagen wird und von manchen Leuten als allein selig machender Lösungsweg verkauft wird.
PS: Der letzte Satz ist ein wenig polemisch, ich freue mich aber dennoch über jeden Kommentar, der sich damit inhaltlich auseinandersetzt!