Ganzrationale Funktionen mit ungeradem Grad sind alle surjektiv, da sie
(1) stetig auf R sind
(2) unbeschränkt sind und
(3) einen globalen Vorzeichenwechsel aufweisen.
Da die vorliegende kubische Funktion an allen ihren Nullstellen ihr Vorzeichen wechselt, müssen zwische benachbarten Nullstellen Extremstellen liegen, daher ist die Funktion nicht injektiv. Konkrete Punkte lassen sich leicht ausfindig machen.
Wichtig ist mir aber noch: Das Wort "beweisen" schreibt sich nicht mit ß!