bisher habe ich noch nie mit einer Steckbriefaufgabe gerechnet, wo ich eine NSt bestimmen musste.
Gesucht ist die ganzrationale Funktion zweiten Gerades, deren Graph bei -1 eine NST aufweist und der in M 1/2 / 2 1/4 ein Maximum hat.
Ich habe die erste und zweite Ableitung der Funktion zweiten Gerades gemacht und da die erste Aleitung die Steigung angibt, habe ich geschrieben das f (x) = 0 sein muss. also, f
(1/2) = 2a * 1/2 + b = 0
Diese Gleichung habe ich auch römisch zwei gesetzt, damit ich nachher eine lineares Gleichungssystem habe. Aber mir fehlt römisch 1, denn ich wiess nicht, wie ich das mit dem NST machen soll
LG