√ (x+1) -√ x= √ (2x -1/2) |(..)^2
(√ (x+1) -√ x)^2= 2x -1/2
2x -2 √ (x(x+1)) +1 =2x -1/2 |-2x
-2 √ (x(x+1)) +1 = -1/2 | -1
-2 √ (x(x+1)) = - 3/2 |: (-2)
√ (x(x+1)) = 3/4 |(..)^2
(x(x+1)) = 9/16
x^2 +x -9/16=0 ->pq- Formel
x1.2= -1/2 ± √ (1/4 +9/16)
x1.2= -1/2 ± √ (13/16)
x1.2= -1/2 ± (√ (13)/ 4)
Probe nicht vergessen.
Nur -1/2 + (√ (13)/ 4) ist die Lösung der Aufgabe.