Zunächst Schnittpunkte berechnen:
1/2x^2 = 1/2(x^3 + x^2 - 4x)
x1 = -2, x2 = 0, x3 = 2
Und dann die Differenzfunktion jeweils integrieren:
A1 = \( \int\limits_{-3}^{-2} \) (1/2x^2-(1/2x^3 + 1/2x^2 - 2x))dx = 25/8
A2 = \( \int\limits_{-2}^{0} \) (1/2x^3 + 1/2x^2 - 2x-(1/2x^2))dx = 2
A3 = \( \int\limits_{0}^{2} \) (1/2x^2-(1/2x^3 + 1/2x^2 - 2x))dx = 2
A = A1 + A2 + A3 = 25/8 + 2 + 2 = 57/8 FE