Hallo,
betrachte den Homomorphismus
$$\phi:\left\{\begin{array}{lcr}U&\rightarrow&U+W/W\\u&\mapsto&u+W\end{array}\right\}$$
Es gilt $$ u \in Kern(\phi)\iff u\in U\wedge u+W=W\iff u\in U \cap W$$
Die Isomorphie ist also gerade die Aussage des Homomorphiesatzes.
Gruß ermanus