Heisst das dann nicht, dass π mit Hilfe von Wurzeln, + , -, * , : dargestellt werden kann?
Nein. Wenn man π ins Integral steckt (und da gehört eins hin), dann muss man das auch irgendwie kompensieren. Diese Kompensation kann man vor das Integral ziehen und hebt das π vor dem Integral dann auf.
Du schreibst: Erst Integral ausrechnen.
Das habe ich nicht geschrieben.
Ziehst du da auch Faktoren vor das Integral?
Ganz im Gegenteil. Ich ziehe Faktoren in das Integral hinein.
Hier die Datails. Insbesondere möchte ich auf die Umformung von der fünften zur sechsten Zeile hinweisen.
$$\begin{aligned} \frac{-2^{\frac{7}{2}}}{\sqrt{\frac{\pi}{3}}}\cdot\int_{m}^{-\infty}e^{\frac{m^{2}}{-6}+\frac{mx}{3}-\frac{x^{2}}{6}}\text{d}x & =\frac{-2^{\frac{7}{2}}}{\sqrt{\frac{\pi}{3}}}\cdot\int_{m}^{-\infty}e^{-\frac{1}{6}\left(\frac{-6m^{2}}{-6}+\frac{-6mx}{3}-\frac{-6x^{2}}{6}\right)}\text{d}x\\ & =\frac{-2^{\frac{7}{2}}}{\sqrt{\frac{\pi}{3}}}\cdot\int_{m}^{-\infty}e^{-\frac{1}{6}\left(m^{2}-2mx+x^{2}\right)}\text{d}x\\ & =\frac{-2^{\frac{7}{2}}}{\sqrt{\frac{\pi}{3}}}\cdot\int_{m}^{-\infty}e^{-\frac{1}{6}\left(x-m\right)^{2}}\text{d}x\\ & =\frac{-2^{\frac{7}{2}}}{\sqrt{\frac{\pi}{3}}}\cdot\int_{m}^{-\infty}e^{-\frac{\left(x-m\right)^{2}}{6}}\text{d}x\\ & =\frac{-2^{\frac{7}{2}}}{\sqrt{\frac{\pi}{3}}}\cdot\int_{m}^{-\infty}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =\frac{-2^{\frac{7}{2}}}{\sqrt{\frac{\pi}{3}}}\cdot\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{\frac{7}{2}}\cdot\left(\frac{\pi}{3}\right)^{-\frac{1}{2}}\cdot\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{\frac{7}{2}}\cdot\frac{\pi^{-\frac{1}{2}}}{3^{-\frac{1}{2}}}\cdot\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{\frac{7}{2}}\cdot\pi^{-\frac{1}{2}}\cdot3^{\frac{1}{2}}\cdot\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{\frac{7}{2}}\cdot\pi^{-\frac{1}{2}}\cdot3^{\frac{1}{2}}\cdot\left(2\cdot\pi\cdot\sqrt{3}^{2}\right)^{\frac{1}{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{\frac{7}{2}}\cdot\pi^{-\frac{1}{2}}\cdot3^{\frac{1}{2}}\cdot2^{\frac{1}{2}}\cdot\pi^{\frac{1}{2}}\cdot\left(\sqrt{3}^{2}\right)^{\frac{1}{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{\frac{7}{2}}\cdot\pi^{-\frac{1}{2}}\cdot3^{\frac{1}{2}}\cdot2^{\frac{1}{2}}\cdot\pi^{\frac{1}{2}}\cdot3^{\frac{1}{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{\frac{7}{2}}\cdot2^{\frac{1}{2}}\cdot\pi^{-\frac{1}{2}}\cdot\pi^{\frac{1}{2}}\cdot3^{\frac{1}{2}}\cdot3^{\frac{1}{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{\frac{7}{2}+\frac{1}{2}}\cdot\pi^{-\frac{1}{2}+\frac{1}{2}}\cdot3^{\frac{1}{2}+\frac{1}{2}}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-2^{4}\cdot\pi^{0}\cdot3^{1}\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-16\cdot1\cdot3\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-48\int_{m}^{-\infty}\frac{1}{\sqrt{2\cdot\pi\cdot\sqrt{3}^{2}}}e^{-\frac{\left(x-m\right)^{2}}{2\cdot\sqrt{3}^{2}}}\text{d}x\\ & =-48\cdot\left(-\frac{1}{2}\right)\\ & =24 \end{aligned}$$