Aufgabe:
$$\text{ Bestimmen Sie alle alle } n\in \mathbb{N} \text{ für die der folgende Term durch 3 Teilbar ist } \\ n^{3}+n^{2} + 1$$
Problem/Ansatz:
$$\text{ daraus folgt dann } \\ \Rightarrow n^{3}+n^{2} + 1 \equiv 0 \text{ (mod 3) } \Leftrightarrow n^{3}+n^{2} \equiv 2 \text{ (mod 3) }$$
Stimmt das bis hier hin so? Und wie komme ich damit dann weiter? Ich kann weder für gerade noch ungerade n ein Muster erknnen?