Zeigen Sie, dass \( x: \mathbb{R} \rightarrow \mathbb{R}, \varphi \mapsto r(\varphi-\sin (\varphi)) \) für festes \( r \) eine bijektive Abbildung definiert, womit \( \varphi(x) \) die Differentialgleichung
$$ 1=\varphi^{\prime}(x) r(1-\cos (\varphi)) $$
erfüllt.
Ich würde mich sehr über Unterstützung freuen!