Jetzt ist die Frage muss bzw. kann man alle Lösungen in einer Form angeben?
Wenn du das LGS gelöst hast, zb in dieser Form:
$$ a\cdot \begin{pmatrix}1\\0 \end{pmatrix}+b\cdot \begin{pmatrix}-0.5\\1 \end{pmatrix}+c\cdot \begin{pmatrix}-0.5\\1 \end{pmatrix}+d\cdot \begin{pmatrix}0.5\\-1 \end{pmatrix}=\begin{pmatrix}0\\0 \end{pmatrix} $$
Dann wirst du darauf kommen, dass die Zahlen \(a=0\) und \(d=b+c\), wobei b und c freie Variablen sind, das LGS von oben lösen. Diese Lösung kannst du nun parametrisieren:
\(A:= \begin{pmatrix}1&-0.5&-0.5&0.5\\0&1&1&-1 \end{pmatrix}\in \mathbb{R}^{2,4}\)
\( \ker (A)=\left \{v\in \mathbb{R}^4: A\cdot v=0\right \}=\left\{\begin{pmatrix}a\\b\\c\\d \end{pmatrix}=\begin{pmatrix}0\\b\\c\\b+c\end{pmatrix}=b\cdot \begin{pmatrix}0\\1\\0\\1 \end{pmatrix}+c\cdot \begin{pmatrix}0\\0\\1\\1 \end{pmatrix}\in \mathbb{R^4}:b,c\in \mathbb{R}\right \}\\ =\operatorname{span}\left(\begin{pmatrix}0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix}0\\0\\1\\1 \end{pmatrix}\right)\).