0 Daumen
1,4k Aufrufe

Aufgabe:

blob.png

Text erkannt:

Die folgende Grafik zeigt drei kritische Punkte der Funktion \( f(x) \) bzw. ihrer Ableitung \( f^{\prime}(x) \). Die Funktion ist gegeben durch:
$$ f(x)=1.12 x^{3}-1.92 x^{2}-1.10 x+4.06 $$
Was ist der Funktionswert \( f(x) \) im Punkt B?
a. 3.36
b. -2.20
с. 0.00
d. 3.01
e. 4.03

e. ist nicht richtig


Problem/Ansatz:

https://www.mathelounge.de/531347/was-ist-der-funktionswert-f-x-im-punkt-a

wenn ich es wie hier rechne(link), komme ich 4,19.

Muss man hier anders rechnen für den Funktionswert, weil dies ein Wendepunkt ist?

Avatar von

Ein Graph kann nicht beides zugleich zeigen.

Die Ableitung hat ihren eigenen Graphen.

Die Aufgabe ist so falsch formuliert.

3 Antworten

0 Daumen
 
Beste Antwort

Der Punkt B ist der Wendepunkt.

Berechne die Wendestelle (2. Ableitung gleich 0 setzen), und setze diese Stelle dann in die Funktionsgleichung ein, um die y-Koordinate von B zu berechnen.

Avatar von 55 k 🚀

Wobei mich schon mal interessieren würde, welcher "Hobbymathematiker" sich diese Frage ausgedacht hat. B ist eigentlich kein kritischer Punkt der ersten Ableitung, denn dazu müsste B erst einmal auf dem Graphen der ersten Ableitung liegen.

Richtig ist lediglich, dass die x-Koordinate von B eine kritische STELLE der ersten Ableitung ist.

;) frage mich auch immer, wie man auf manche Übungen kommt.

0 Daumen

f(x) = 1.12·x^3 - 1.92·x^2 - 1.1·x + 4.06

f'(x) = 3.36·x^2 - 3.84·x - 1.1

f''(x) = 6.72·x - 3.84 = 0 --> x = 4/7

f(4/7) = 7383/2450 = 3.013469387

Wenn du jetzt exakt mathematisch bist, dann stimmt keine der Antworten.

Avatar von 487 k 🚀
0 Daumen

Hier die Berechnung

gm-253.JPG

Die 5.Zeile : Berechnung der Extrempunkte
ist überflüssig.

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
2 Antworten
0 Daumen
3 Antworten
0 Daumen
2 Antworten

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community