b) ist ja eigentlich binomialverteilt, da du aber folgenden Ausdruck berechnen müsstest:$$P(X\geq 920)=\sum \limits_{k=920}^{1200}\begin{pmatrix} 1200\\k \end{pmatrix}\cdot 0.65^k\cdot 0.35^{1200-k}$$ ist das sehr unhandlich, weil mit solchen Aufgaben selbst gute Taschenrechner in Schwierigkeiten geraten.
Du brauchst eine Normal-Approximation der Binomialverteilung. Die LaPlace-Bedingung \(\sqrt{n\cdot p\cdot (1-p)}=\sqrt{n\cdot p\cdot (1-p)}=\sqrt{1200\cdot 0.65\cdot 0.35}\approx 16.52>3\) ist mehr als erfüllt.
Bestimme nun den Erwartungswert und die Standardabweichung:$$\mu = 1200\cdot 0.65=780 \quad , \quad \sigma\approx 16.523$$ Es gilt nun $$P(X\geq 920)=1-P(X<920)=1-\Phi\left(\frac{k-\mu+0.5}{\sigma}\right)=1-\Phi\left(\frac{919-780+0.5}{16.523}\right)=1-\Phi(8.44)\approx 1.382\cdot 10^{-16} \, \%$$