1. Ableitung bilden
a)$$x≥0$$$$ f(x)=lg(2x)=$$$$1/ln(10)*ln(2x)$$$$f'(x)=1/(x*ln(10))$$
b)$$|x|≥1$$$$g(x)= lg(x^2-1)=$$$$1/ln(10)*ln(x^2-1)$$$$g'(x)=2x/(ln(10)(x^2-1))$$
c) $$x>0$$$$h(x)= log_3(\frac{1}{x})=$$$$-1/ln(3)*ln(x)$$$$h'(x)=-1/(x*ln(3))$$
d)$$ k(x)=x * lg(x²)=$$$$x/ln(10)*ln(x^2)$$$$k'(x)=1/ln(10)*(ln(x^2)+2)$$