\(f(x)=\frac{1}{20}x^4-\frac{29}{20}x^2+5\)
Nullstellen ohne Substitution:
\(\frac{1}{20}x^4-\frac{29}{20}x^2+5=0|\cdot 20\)
\(x^4-29x^2+100=0|-100\)
\(x^4-29x^2=-100\) +q.E.\(( \frac{29}{2})^2 \):
\(x^4-29x^2+(\frac{29}{2})^2=-100+(\frac{29}{2})^2\) 2. Binom:
\((x^\red{2}-\frac{29}{2})^2=110,25 | ±\sqrt{~~}\)
1.)
\(x^\red{2}-14,5=10,5 |+14,5\)
\(x^\red{2}=25\)
\(x_1=5\)
\(x_2=-5\)
2.)
\(x^\red{2}-14,5=-10,5 |+14,5\)
\(x^\red{2}=4 \)
\(x_3=2 \)
\(x_4=-2 \)