Aufgabe:
Gegeben ist eine Pyramide mit einer quadratischen Grundfläche und den Eckpunkten A(0|0|0) B(6|0|0) C(6|6|0) D(0|6|0) und S(3|3|4).
Die Pyramide verändert ihre Form, wenn sich der Eckpunkt D auf der positiven x2-Achse bewegt. Der Eckpunkt wird dann DK bezeichnet und es gilt DK (0|k|0) für k>0.
a) Das Dreieck SCDK wird um die Kante CDK gedreht, bis sich ein Eckpunkt des Dreiecks im Punkt P(9|11|0) befindet. Bestimmen Sie den zugehörigen Wert von k.
b) Zusätzlich zum Eckpunkt DK verändert sich nun auch die x3-Koordinate der Spitze S der Pyramide in Abhängigkeit von k. Für die Koordinaten der Spitze Sk(3|3|h(k)) mit einer für k>0 definierten Funktion h. Ermitteln Sie einen Funktionsterm der Funktion h so, dass die Pyramide für jeden Wert von k ein Volumen von 48 besitzt.
Problem/Ansatz:
Leider weiß ich nicht wie man die Aufgabe lösen soll. Ich rechne bereits seit mehreren Stunden und bin noch zu keiner nennenswerter Lösung gekommen. Ein guter Lösungsansatz würde mir schon sehr weiterhelfen.