0 Daumen
603 Aufrufe

Aufgabe:

Gibt es eine Primzahl p, die n(n+1) und (n+2)*(n+3) teilt? n ist ne natürliche Zahl.


Problem/Ansatz:

p=2, denn n(n+1) gerade (davor bewiesen) und (n+2)*(n+3) hat für alle n einen geraden Faktor, also auch durch 2 teilbar. Stimmt das?

Avatar von

Gibt es da auch ne Möglichkeit so einen Teiler rechnerisch zu bestimmen? Also ne Art Algorithmus? Oder muss man immer neu überlegen ?

2 Antworten

0 Daumen

Das ist richtig.

Die Begründung "(n+2)*(n+3) hat für alle n einen geraden Faktor" ist zwar auch richtig, erscheint aber überflüssig, da das ja bereits mit "n(n+1) gerade" klar ist.

Avatar von 27 k

Danke:) Wieso bekomme ich 2 nicht raus, wenn ich die Polynomdivision anwende?

0 Daumen

Die einzige Primzahl, die jedes Produkt zweier aufeinanderfolgender natürlicher Zahlen teilt, ist 2, weil eine von zwei aufeinanderfolgenden Zahlen immer gerade ist und damit auch das Produkt in jedem Falle gerade ist.

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community