Aloha :)
Der Trick liegt in der "quadratischen Ergänzung". Nimm die Zahl vor dem \(x\), halbiere sie zuerst und quadriere sie danach. Die Zahl vor dem \(x\) ist die \(2\), die Hälfte davon ist \(1\) und das Quadrat von \(1\) ist \(1^2=\boxed{1}\). Damit ist nun:$$f(x)=x^2-2x-3=x^2-2x+\boxed{1}-\boxed{1}-3=(x^2-2x+1)-1-3$$Auf die Klammer kannst du nun eine binomische Formel anwenden. Die beiden Zahlen außerhalb der Klammer fasst du einfach zusammen:$$f(x)=(x-1)^2-4$$
Der Scheitelpunkt ist nun dort, wo das Quadrat der Klammer zu Null wird, also bei \(x=1\):$$S(1|-4)$$
~plot~ x^2-2*x-3 ; {1|-4} ; [[-2|4|-5|4]] ~plot~