\( \begin{aligned} y^{\prime}(t) &=k \cdot(R-y(f)) \cdot y(\sigma) \\ & u(0)=4_{0} \end{aligned} \)
\( y(0)=y \)
\( y(t)=\frac{R}{1+\left(\frac{R}{y_{0}}-1\right) e^{-k R t}} \)
\( R=2,4 \mathrm{~m} \)
\( y_{0}=0,28 \mathrm{~m} \)
\( y(4)=1,12 \mathrm{~m} \)
\( 1,12 m=\frac{34 m}{1+\left(\frac{2,4 m}{0,28 m}-1\right) \cdot e^{-k} \cdot 2,4 m \cdot 4} \)
\( 1,12=\frac{2,4}{1+\frac{53}{4} \cdot e^{-k \cdot 9,6}} \)
\( \frac{15}{7}=1+\frac{53}{7} \cdot e^{-k \cdot 96} \)
\( 15=7+53 \cdot e^{-k-96} \)
\( 53 \cdot e^{-k \cdot 96}=7-15 \)
\( e^{-k \cdot 96}=\frac{8}{53} \)
\( -k \cdot 96=\ln \left(\frac{8}{53}\right) \)
\( k=-\frac{1}{96} \cdot \ln \left(\frac{8}{53}\right) \)
\( k=0,196964 \)
\( y(6)=\frac{2,4}{1+\left(\frac{2,4}{0,28}-1\right) e^{-0.196664 \cdot 2,4 \cdot 6}}=1,66 \mathrm{~m} \)