Text erkannt:
Bestimmen Sie die Umkehrfunktion der Funktion \( f \) mit
$$ f(x)=\frac{2 x}{x-3}, \quad x \in \mathbb{R} \backslash\{3\} $$
und geben Sie die Wertemenge der Umkehrfunktion an.
Auflösen nach \( x \) :
$$ \begin{array}{r} y=\frac{2 x}{x-3} \Longrightarrow y(x-3)=2 x \quad \Longrightarrow \quad x(y-2)=3 y \quad \Longrightarrow \quad x=\frac{3 y}{y-2} . \\ \text { Umkehrfunktion: } f^{-1}(x)=\frac{3 x}{x-2} \end{array} $$
Wertemenge der Umkehrfunktion entspricht Definitionsmenge der Funktion: \( \mathbb{W}_{f^{-1}}=\mathbb{R} \backslash\{3\} \)
Eine kleine Frage, beim "Auflösen nach x" nachdem zweiten Pfeil (=>) wie kommen die auf 2mal (y) also woher kommt das 2. y und der Wert wechsel von 2 auf 3y