\(z=\overline{-2 \mathrm{i}-3}+\frac{4 \mathrm{i}+5}{\mathrm{i}+1} \)
\( z=2 i-3+\frac{4 i+5}{i+1}=\frac{(2 i-3) \cdot(i+1)+4 i+5}{i+1}=\frac{2 i^{2}+2 i-3 i-3+4 i+5}{i+1}=\frac{3 i}{i+1}= \)
\( =\frac{(3 i) \cdot(i-1)}{(i+1) \cdot(i-1)}=\frac{3 i^{2}-3 i}{i^{2}-1}=\frac{-3-3 i}{-2}=\frac{3+3 i}{2}=\frac{3}{2}+\frac{3}{2} i \)
\(\begin{array}{l} \operatorname{Re}(z)=1,5 \\ \operatorname{Im}(z)=1,5 \end{array} \)