Hinweis: Du meinst wohl, dass die Reihe von \(k=1\) bis \(\infty\) läuft.
Schreib mal die ersten Folgenglieder auf. Das ist eine Laurent-Reihe, die im Übrigen \(f(z)=\frac{1}{z^2}+\frac{1}{z+2}\) entspricht. Der Koeffizient \(a_{-1}\) der Laurentreihe ist das Residuum von \(z=-2\), also \(\operatorname{res}(f,-2)=a_{-1}=1\). Das Residuum von \(z=0\) ist \(0\). Das liest man auch an der Laurent-Reihe ab. Mehr dazu hier.