Aloha :)
Willkommen in der Mathelounge... \o/
Dein Normalenvektor \(\vec n\) ist richtig, du brauchst ihn jetzt einfach nur mit \(\vec x\) zu multiplizieren:
$$\vec n\cdot \vec x=\begin{pmatrix}2\\4\\-1\end{pmatrix}\cdot\left[\begin{pmatrix}3\\1\\20\end{pmatrix}+k\begin{pmatrix}-1\\1\\2\end{pmatrix}+\ell\begin{pmatrix}1\\0\\2\end{pmatrix}\right]$$Da der Normalenvektor \(\vec n\) auf den beiden Richtungsvektoren der Ebene senkrecht steht, ist das Skalarprodukt von \(\vec n\) mit den Richtungsvektoren gleich Null und die Gleichung vereinfacht sich zu:$$\vec n\cdot \vec x=\begin{pmatrix}2\\4\\-1\end{pmatrix}\cdot\begin{pmatrix}3\\1\\20\end{pmatrix}=6+4-20=-10$$Andererseits ist aber auch:$$\vec n\cdot\vec x=\begin{pmatrix}2\\4\\-1\end{pmatrix}\cdot\begin{pmatrix}x\\y\\z\end{pmatrix}=2x+4y-z$$Damit hast du die Koordinatenform der Ebene fertig:$$E\colon\;2x+4y-z=-10$$
Manchmal ist mit "Normalform" gemeint, dass man den Normalenvektor noch normieren muss. Schau mal, wie ihr das im Unterricht vereinbart habt. Dann müsstest du beide Seiten der Ebenengleichung noch durch \(\sqrt{2^2+4^2+(-1)^2}=\sqrt{21}\) dividieren.