Hallo,
y′′ = 2e^y |*2y'
y′′ 2 y' = 2e^y 2 y'
Integration nach \( x \rightarrow \frac{1}{2}\left(y^{\prime}\right)^{2}=F(y)+c \) = 2e^y +C | *2
mit \( \frac{d}{d x} F(y)=f(y) y^{\prime} \)
(y')^2 = 4 e^y +2C
AWB: y(0) = 0, y′(0) = −2 einsetzen:
4=4 e^0 +2C -------->C=0
--->
y' = ± √ (4 e^y +2C)
y' = ± √ 4 e^y
----->
a) y' = √ 4 e^y = 2 * √ e^y ------>Die AWB erfüllen die Gleichung nicht ,y′(0) = −2
b) y' = - √ 4 e^y = - 2 * √ e^y
y' = - 2 * √ e^y
dy/dx = - 2 * √ e^y
dy/ √e^y)= -2dx
-2 e^(-y/2) = -2x+C |*(-1)
2 e^(-y/2) = 2x-C |:2
e^(-y/2) = x- (C/2) |ln(..)
-y/2= ln(x- (C/2))
y/2= - ln(x- (C/2))
y= - 2 ln(x- (C/2)) ; y(0)=0
0 = - 2 ln(- (C/2)) ----->C= -2
y= - 2 ln(x+1) -->Lösung