Gegeben sei die Matrix $$A = \begin{pmatrix} 3 & 6 & 9 \\ 1 & 2 & 3 \\ 2 &4&6\end{pmatrix}$$
a) Berechnen Sie den Kern von A.
b) $$x = \begin{pmatrix} 1\\-1 \\2 \end{pmatrix}$$ ist eine Lösung von $$Ax = \begin{pmatrix} 15\\5 \\10 \end{pmatrix}$$ (muss nicht nachgeprüft werden). Wie sieht die allgemeine Lösung von $$Ax=\begin{pmatrix} 15\\5 \\10 \end{pmatrix}$$ aus?
c) Geben Sie die Dimension des Bildes von A an. Für welche \(b \in \mathbb{R}^3\) hat das LGS \(Ax = b\) mindestens eine Lösung? Begründen Sie, ob die Lösung in diesen Fällen eindeutig ist.
Problem:
Ich habe alles soweit durchgerechnet, hatte aber zwischendrin ein paar Fehler gemacht, und nach langem Überlegen komme ich einfach auf keine sinnvolle Lösung. Ich brauch dringend Hilfe. Könnte es bitte jemand einmal ausführlich durchgehen? So dass ich es nachvollziehen kann und es endlich verstehe.
Vielen, vielen Dank schonmal im Voraus.