Gegeben sei der Weg \( \gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2} \) mit \( \gamma(t)=(t-\sin t, 1- \) \( \cos t)^{T} \)
Zeigen Sie, dass \( \gamma(t) \) für jedes \( t \in[0,2 \pi] \) auf dem Kreis mit Mittelpunkt \( (t, 1) \) und Radius 1 liegt und skizzieren Sie die Lage des Punktes auf dem Kreis für die Werte \( t \in\left\{0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi\right\} \)
Hallo zusammen, wie genau zeige ich den ersten Schritt mit dem Kreis bzw. wie genau setzt man dann danach die Werte ein und zeichnet die ''Lage''. Ich kann mir das gerade nicht bildlich vorstellen.
Danke im Voraus!