0 Daumen
112 Aufrufe

Aufgabe: Beweisen oder widerlegen Sie: A ⊆ Ω sind unabhängig, genau denn wenn P(A) = 0 oder P(A) = 1?

Wäre es dann:

P(A∩A) = P(A) * P(A), so gilt P(A)2 und dies ist bei P(A) = 0 oder P(A) = 1 der Fall.

Und weil A ⊆ Ω ist, wäre dann P(A) = P (A∩Ω), so gelte P(A) * (1-P(Ω)) = 0, egal was P(A) ist weil P(Ω) = 1 ist nach Axiom vom Wahrscheinlichkeitsraum.


Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community