\( \sum\limits_{n=1}^{\infty}{\frac{n+4}{n^2-3n+7}} \)
\(n=1\)
\({\frac{1+4}{1^2-3*1+7}} ={\frac{5}{5}}=1 \)
\(n=2\)
\({\frac{2+4}{2^2-3*2+7}} ={\frac{6}{5}}=1,2 \)
\(n=3\)
\({\frac{3+4}{3^2-3*3+7}} ={\frac{7}{7}}=1 \)
\(n=4\)
\({\frac{4+4}{4^2-3*4+7}} ={\frac{8}{11 }}≈0,73 \)
.......................
\(n=100\)
\({\frac{100+4}{100^2-3*100+7}} ={\frac{104}{11 }}≈0,011 \)
Tendenz wird immer kleiner.
\( {\frac{n+4}{n^2-3n+7}}={\frac{\frac{n}{n^2}+\frac{4}{n^2}}{1-\frac{3}{n}+\frac{7}{n^2}}}={\frac{\frac{1}{n}+\frac{4}{n^2}}{1-\frac{3}{n}+\frac{7}{n^2}}} \)
\( \lim\limits_{n\to\infty}{\frac{\frac{1}{n}+\frac{4}{n^2}}{1-\frac{3}{n}+\frac{7}{n^2}}}=0 \)